Offline RL for Real-Robot
Pre-Iraining and Fine- uning
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Offline Reinforcement Learning

Standard Online RL Offline RL

this is done Collegt a
many times_ one-time
dataset

No unsafe or costly exploration

Potential to bring generalization benefits of supervised learning



What this Picture Actually Looks Like
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Several key properties

Multi-task data, no reward

Humans or “other agents”

Directly from raw visual
observations

a big general-purpose dataset

limited task data

How can we apply offline RL in
the presence of all of this?




Learning from Diverse Robot Datasets

Toy kitchen 1 o Toy Kitchen 2

Imitation learning

Ebert et al. 2021
Young et al. 2021

Toy Kitc4

Put Pear on Plate A

Fine-tuning on
limited, task-
specific data

Pre-training on
broad data



Pre-Training for Robots Using Offline RL

10 domains
Put S s' in Pot 1 OO taSkS put corn in bowl, Task ID: — '
ut Sushi i , -
N e I 12k demos I
Put Eggplanton Place, (EUNENEED @ Batch-mixing pre-training and target data

Task ID:
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1. Pre-train V|a

_ 2. Continue fine-
offline RL tuning with offline RL

Put pot in basket,
Task ID:

Ebert*, Yang* et al. Bridge data: Boosting Generalization of Robotic Skills. RSS 2022.



Ingredient 1: Conservative Q-Learning

The issue in offline RL is erroneous Q-values at out-of-distribution (OOD) actions

Q(Sa a) < T(Sa a) + nya/Nﬂ'Q (a’|s’) [Q(Sla a/)]

Control this value somehow!

Maximize the
data Q-values

Qcqu(s,a) :=arg minmax (EswpEa,(als)|Q(s,a)] — Esap[Q(s,a)]) +

Q M

Minimize OOD Q-values

Q(s,a)

“Bake the pessimism”
into the Q-function

Naive Q-function
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Actual Q-function

Action support
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Standard TD error

_Es,a,s’ND [(Q(Sa a) T y(87 a))Q}

Q(s,a)

K., Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. NeurlPS 2020
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Ingredient 2: Architecture

Modified ResNet
with group
normalization

Output ResNet
feature maps
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Learned position
embeddings
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Task ID
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Action vector duplicated

Fully-connected Layers

Q¢(87 CL)



Ingredient 3: Rewards & Checkpoint Selection
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Summary of Ingredients in PTR

Ingredient 1: An Offline RL Algorithm (CQL)

Ingredient 2: A high-capacity architecture
(ResNet + group normalization + action duplication + learned spatial embeddings)

Ingredient 3: Reward functions + checkpoint selection heuristic



Now some

—mpirical

Results....



Task: Solving A Task in A New Domain

2. Fine-Tune on Target Domain Data:
1 door, 10 demonstrations

|
| | | | | | | | | | |

1. Pre-Train on Bridge Data, 12 doors 800 demonstrations



Results: Solving A Task in A New Domain

Method: Method:
Imitation (Best prior method) PTR (Ours)




Task: Solving New Tasks in New Domains

F__

| R

10 target
demonstrations



Best Prior

Results: Solving New Tasks in New Domains

Task: Put sweet . !
potato on plate

Task: Put sweet
potato on plate




Some Quantitative Results

Joint training vs pre-training??

( BC finetuning ) Joint training = Target data only [ Pre-train. rep. + BC finetune ‘
Task || PTR (Ours) || BC (fine.) | Autoreg. BC BeT | COG BC @ CQL BC | R3M MAE
Take croissant from metal bowl 7/10 3/10 5/10 1/10 || 4/10  4/10 @ 0/10 1/10 1/10 3/10
Put sweet potato on plate 7/20 1/20 1720 0/20 || 020 0/20 @ 0/20 0/20 0/20 1/20
Place knife in pot 4/10 2/10 2/10 0/10 || 1710  3/10 | 3/10 0/10 0/10 0/10
Put cucumber in pot 5/10 0/10 1/10 0/10 | 210  1/10 | 0/10 0/10 | 0/10 0/10

)\ - o N /‘
Imitation (using transformers, Self-supervised pre-training
auto-regressive) from videos / bridge data
Better fine-tuning! Representation learning

Takeaway: Offline RL learns useful representations + better fine-tuning



Scaling Curve And Analysis

Scaling Trend for PTR Why would RL enable better performance...
0.7 . '
% OpenDoor 4 Pick-Place {Average) ..when the data is collected via
p— human teleoperation?
<
¢ Preview: Value-functions
s can learn what’s critical!
:% 0.175
Qualitative Comparison of BC (finetune) and PTR
. | Task: Take Croissant from Metal Bowl | . -ﬂn . .
Small Conv IMPALA ResNet 18 ResNet 34 ResNet50 S <t i e il

crossiant is not underneath

Networks

Better performance
with larger networks!

Task: Put Cucumber in Bowl
BC (finetune)

— Failure: executes an imprecise grasp, and fails to
locate the pot accurately

PTR
Success: Places Cucumber in Pot

—




Analysis of Why PTR Outperforms Imitation

With near-expert data
Agent can only move within this region

/ .
High reward, r(s)=1
Just need to Iearn{oA P / - g (s)
roughly go right A
LR i SubOpt(mgr,) < SubOpt(mgc)
N2 o o= c

if volume of non-critical
states in a trajectory is large

B

Single action
succeeds ( critical”)

Test: Run weighted BC, where weights come from the learned Q-function!

Task | BC (finetune) R (Ours) H Advantage-weighted BC (finetune)

Put cucumber in pot 0/10 5/ 10 5/10
Take croissant from metal bowl 3/10 7/ 10 6/10

K., Hong, Singh, Levine. When Should Offline RL Be Preferred Over BC? ICLR 2022.




Takeaways and Future Directions

» Offline RL can be good for both representation learning and control, even
with human demonstration data

» Future Directions:

» Extend to use videos and multi-robot data on more dexterous tasks
» Goal specification: language? goals? reward learning?

Thank You!

Paper: https://arxiv.org/abs/2210.05178
Code: https://qgithub.com/Asap7772/PTR



https://arxiv.org/abs/2210.05178
https://github.com/Asap7772/PTR

