
Implementation Talk:
Offline RL and

Conservative Q-Learning
Aviral Kumar

1

QCQL(s,a) := arg min
Q

max
µ

�
Es⇠DEa⇠µ(a|s)[Q(s,a)]� Es,a⇠D[Q(s,a)]

�
+

1

2↵
Es,a,s0⇠D

⇥
(Q(s,a)� y(s,a))2

⇤

Abstract: Conservative Q-Learning
“Bake the pessimism” into the Q-function

Minimize OOD Q-values

Maximize the
data Q-values Standard TD error

K., Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. NeurIPS 2020
2

Implementation in Discrete Action Settings
Reduces to a combination of TD-error + BC loss

“standard NLL BC loss”

Simple!

Ø Compute the log-sum-exp exactly!

Ø Often discretized representation of Q-values (C51) results in better training

Ø Use DR3 regularization to effectively leverage capacity

K., Agarwal, Ma, Courville, Tucker, Levine. DR3: Value-Based Deep RL Requires Explicit Regularization. ICLR 2022

DR3 normalization: Normalize
features to have norm = 1

DR3: Add an explicit regularizer
to minimize feature dot products!

See the scaled Q-
learning paper for
how to use it with
large networks!

K., Agarwal, Geng, Tucker*, Levine*. Offline Q-Learning on Diverse, Multi-Task Data Both Scales and Generalizes. arXiv 2022.

Implementation in Continuous Control
More tricky than discrete settings due to computation of log-sum-exp

Can be computed with samples!

Typically, CQL chooses p(a|s) to be:

Singh, Yu, Yang, Zhang, K., Levine. COG: Connecting New Skills to Past Experience via Offline RL. CoRL 2020.

Ø 4-10 samples of actions suffice

Ø Can also omit log p(a|s) if the action space is too large

Offline Hyperparameter Tuning
Network Generally, use bigger networks

(e.g., on D4RL tasks (256, 256) -> (512, 512, 512))

Tuning the hyperparameter 𝜶

Run a sweep over a certain range of values, pick a sweet spot where
TD error is small, and CQL regularizer is small.

If hard to minimize both CQL loss and TD-error, pick a larger model size!

If the CQL regularizer can be minimized to very small (or if Q-values
are too small), pick a smaller model size or apply regularization!

K.*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. CoRL 2021.

Tuning overfitting, underfitting and checkpoint
selection in this paper!

General Offline RL Recommendations
Run SARSA first to check if basic details are fine

Ø SARSA would help identify what’s going wrong irrespective of OOD actions!

Ø For example: target network update rate, size of the Q-function, discount factor

Once SARSA passes, try to apply algorithm-specific tuning guidelines

Overfitting, underfittingConservatism 𝛼, network capacity

What’s the Outcome?

Real-Time Mobile Notification Systems @ LinkedIn [Deployed]

Real-robot pre-training and fine-tuning

Code References
Ø CQL implementation for continuous actions: https://github.com/young-geng/JaxCQL

Ø CQL implementation in Jax + parallelizable on
TPUs + end-to-end from vision on robots: https://github.com/Asap7772/PTR

Ø CQL implementation in discrete
action settings: https://github.com/aviralkumar2907/CQL/tree/master/atari/batch_rl

Ø Parallel implementation (runs on TPUs) of scaled CQL: https://tinyurl.com/scaled-ql-code

Thank You!

https://github.com/young-geng/JaxCQL
https://github.com/Asap7772/PTR
https://github.com/aviralkumar2907/CQL/tree/master/atari/batch_rl
https://tinyurl.com/scaled-ql-code

