Implementation Talk:
Offline RL and
Conservative Q-Learning

Aviral Kumar

& €~CALIP)

&V st O B
S L =N 1
S o === > -
i 8
eV —
A — o K
%\ IESEEY) Y
~ \9&,1\/ y /&A s
N] Y 4
Q 1868 .

UNIVERSITY OF CALIFORNIA

Abstract: Conservative Q-Learning

“Bake the pessimism” into the Q-function

Qcqu(s,a) :=arg minmax (EswpEa,(as)|Q(s,a)] — Esaup[Q(s,a)]) +

Q M

Maximize the
data Q-values

Minimize OOD Q-values

Naive Q-function

Q(s,a)

\
\
~
[~ .\

Actual Q-function

Action support a

1

20

Standard TD error

IEis,a,s’wD [(Q(S7 a) o y(87 a))2:

Conservative Q-function

/ A Y
/ \
\
\
\

Action support

K., Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. NeurlPS 2020

Implementation in Discrete Action Settings

Reduces to a combination of TD-error + BC loss

meinoz Esp |log Zexp(Qg(s,a’)) —Eg a~p [Qo(s,a)] | + TDError(6; D)

“standard NLL BC loss”

» Compute the log-sum-exp exactly! See the scaled Q-
> Often discretized representation of Q-values (C51) results in better training learning 2 for
how to use it with
> Use DR3 regularization to effectively leverage capacity large networks!
DR3: Add an explicit regularizer DR3 normalization: Normalize
to minimize feature dot products! features to have norm = 1

K., Agarwal, Ma, Courville, Tucker, Levine. DR3: Value-Based Deep RL Requires Explicit Regularization. ICLR 2022
K., Agarwal, Geng, Tucker®, Levine*. Offline Q-Learning on Diverse, Multi-Task Data Both Scales and Generalizes. arXiv 2022.

Implementation in Continuous Control

More tricky than discrete settings due to computation of log-sum-exp

logZexp(QQ(s,a)) — (s, adata) » log/exp(Qg(s,a))da — Q(s, adata)

log / p(als) exp(Qo (s, a) —logp(als))da = 10@@@ lexp(Qa(s, a) — logp@

Can be computed with samples!

. 1 1
Typically, CQL chooses p(als) to be: p(als) = 577(@\3) 4 §Unif(a)

» 4-10 samples of actions suffice

> Can also omit log p(a|s) if the action space is too large

Singh, Yu, Yang, Zhang, K., Levine. COG: Connecting New Skills to Past Experience via Offline RL. CoRL 2020.

Offline Hyperparameter Tuning

Network Generally, use bigger networks
(e.g., on D4RL tasks (256, 256) -> (512, 512, 512))

Tuning the hyperparameter a

Run a sweep over a certain range of values, pick a sweet spot where
TD error is small, and CQL regularizer is small.

If hard to minimize both CQL loss and TD-error, pick a larger model size!

If the CQL regularizer can be minimized to very small (or if Q-values
are too small), pick a smaller model size or apply regularization!

Tuning overfitting, underfitting and checkpoint

selection in this paper!

K.*, Singh*, Tian, Finn, Levine. A Workflow for Offline Model-Free Robotic Reinforcement Learning. CoRL 2021.

Return / Q-value

Overfitting

I — Policy return
--- Dataset Q-value

N

N

Return / Train Error

[
I
|
|
|
T
:
|

' #Trainin :ste S
N g step

~

Early stopping

Underfitting

4 — Policy return

=== TD loss
... Optimal return

Training steps

General Offline RL Recommendations

Run SARSA first to check if basic details are fine

» SARSA would help identify what’s going wrong irrespective of OOD actions!

» For example: target network update rate, size of the Q-function, discount factor

Once SARSA passes, try to apply algorithm-specific tuning guidelines

Conservatism a, network capacity Overfitting, underfitting

What’s the Outcome”?

. . . . ! i . - Toy kitChen 1 Toy KitChen 2
L XX J
= —

Train a single policy on 40 Atari games

| Metric | DDOQN vs. Baseline | DDON + CQL vs. Baseline |

Sessions not stat sig +0.24%
WAU -0.69% +0.18%
Volume +7.72% -1.73% . .
CTR -7.79% +2.26% = Fine-tuning on
Pre-training on - .
 feations The - b - broad data Ilmlte_d_ task-
cations. These two metrics are usually harder to move without SpeCIfIC data

increasing Volume than CTR metric, and hence +0.24% sessions
and +0.18% WAU are considered significant business impact. We
have ramped the DDQN + CQL model to all users based on this

result.

Real-robot pre-training and fine-tuning

Real-Time Mobile Notification Systems @ Linkedln [Deployed]

Code References

» CQL implementation for continuous actions: https://github.com/young-geng/JaxCQL

» CQL implementation in Jax + parallelizable on
TPUs + end-to-end from vision on robots: https://github.com/Asap7772/PTR

» CQL implementation in discrete
action settings: https://qithub.com/aviralkumar2907/CQL/tree/master/atari/batch_rl

» Parallel implementation (runs on TPUs) of scaled CQL: https://tinyurl.com/scaled-gl-code

Thank You!

https://github.com/young-geng/JaxCQL
https://github.com/Asap7772/PTR
https://github.com/aviralkumar2907/CQL/tree/master/atari/batch_rl
https://tinyurl.com/scaled-ql-code

