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Offline Reinforcement Learning
Offline RL
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The Generalization Promise of Offline RL
Training on large, pre-collected datasets to attain broad generalization

Expressive function approximators

Broadly 
generalizing 

policies

Large datasets
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This Talk

What does it take to make 
offline RL scale and generalize?
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Where Are We At?
Disclaimer: This definitely misses some works (sorry!) but reflects the general trend.

Supervised learning Reinforcement Learning

Picture taken from the SimCLR paper

AlphaGo Zero (20 res. blocks)              
High-profile
successes AlphaStar (~55M)              

Mu Zero Reanalyze (16 res. blocks)       ~25M

Gym / D4RL (3/4-layer feed-forward)      ~1M

O
ffline RL

IMPALA architecture                             ~30M 

O
nline RL

Generally, much smaller models 
compared to supervised learning
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Large-Scale Study: Single Policy to Play Atari Games

Fine-tune to new games

Evaluate on training games

Train a single policy on 40 Atari games  

Lee et al. Multi-Game Decision Transformers. NeurIPS 2022.

Why Atari? Why is this 
problem challenging? Requires large networks; offline Q-learning never worked

2 billion transitions, 40 games, sub-optimal data   

First large-scale test-bed to evaluate generalization and scaling
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Three key ingredients 
in our recipe…..

7



Ingredient 1: An offline RL Algorithm

K., Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. NeurIPS 2020.

Encourages the Q-function to not over-estimate
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Conservative Q-Learning (CQL)



Ingredient 2: Large Networks

Bellemare et al. A Distributional Perspective on Reinforcement Learning. ICML 2017

Not the typical 
IMPALA architecture!

Keep track of 
spatial information in the image!
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Multi-headed Q-function



Ingredient 3: Methods to Effectively Use Capacity

Dabney et al. The Value Improvement Path: Towards Better Representations for Reinforcement Learning. AAAI 2021.
K., Agarwal, Ma, Courville, Tucker, Levine. DR3: Value-Based Deep RL Requires Explicit Regularization. ICLR 2022

C51 (Q-value = categorical distribution)

Can train via cross-
entropy loss



Summary: “Scaled Q-Learning”
An offline RL algorithm

A way to effectively use capacity

A large neural network 

Conservative Q-learning (CQL)

Bellemare et al. A Distributional Perspective on Reinforcement Learning. ICML 2017

Q-value discretization (distributional RL)
Q-value = categorical 

distribution

Cross-entropy loss
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Performance of Scaled Q-Learning
We find: ~80M ResNet + sub-optimal data => better than online RL or decision transformers

Imitation methods Online RL CQL + DR3 + ResNet101
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Scaling Trends for Scaled Q-Learning
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Scaled Q-learning does scale favorably, while other naïve choices (IMPALA) do not



Generalization: Offline Fine-Tuning to New Games

Limited offline data for a new game + 
pre-trained model on the training games 82% improvement
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Scaled Q-Learning learns representations useful under changes to the environment
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Generalization: Online Fine-Tuning to New Modes



DR3 Enables Effective Use of Capacity

DR3 improves consistently along the way

Enables the use of higher capacity more effectively
DR3 normalization
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Thank You! 

Summary and Takeaways
ØWe present a simple way to scale Q-learning to large datasets + large models 

ØEffectively leveraging capacity of large networks seem critical!

Theoretical Empirical

ØModels pre-trained via offline Q-learning learn generalizing representations

This workDR3, C51

?

Ø Preliminary Code: 
https://tinyurl.com/scaled-ql-code

https://tinyurl.com/scaled-ql-code

