Offline Q-Learning on Diverse Multi-Task Data Both Scales and Generalizes

Aviral Kumar, Rishabh Agarwal, Young Geng, George Tucker*, Sergey Levine*

Offline Reinforcement Learning

The Generalization Promise of Offline RL

Training on large, pre-collected datasets to attain broad generalization

Large datasets

Expressive function approximators

This Talk

What does it take to make offline RL scale and generalize?

Where Are We At?

Disclaimer: This **definitely** misses some works (sorry!) but reflects the general trend.

Offline *****Supervised SimCLR (4x) Gym / D4RL (3/4-layer feed-forward) 75 SimCLR (2x) ImageNet Top-1 Accuracy (%) Mu Zero Reanalyze (16 res. blocks) CPCv2-L MoCo (4x) 70 **★SimCLR** ●CMC ●PIRL-c2x Online RL AMDIM MoCo (2x) 65 IMPALA architecture ~30M PIRL-ens CPCv2 PIRL BigBiGAN 60 AlphaGo Zero (20 res. blocks) High-profile Rotation 55 • InstDisc **SUCCESSES** AlphaStar (~55M) 626 100 200 400 25 50 Number of Parameters (Millions) **Generally, much smaller models**

Supervised learning

Reinforcement Learning

compared to supervised learning

Large-Scale Study: Single Policy to Play Atari Games

Evaluate on training games

Train a single policy on 40 Atari games

Fine-tune to new games

Why Atari? Why is this problem challenging?

First large-scale test-bed to evaluate generalization and scaling
Requires large networks; offline Q-learning never worked
2 billion transitions, 40 games, sub-optimal data

Lee et al. Multi-Game Decision Transformers. NeurIPS 2022.

Three key ingredients in our recipe.....

Ingredient 1: An offline RL Algorithm

Conservative Q-Learning (CQL)

$$\min_{\theta} \alpha \left(\mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[\log \left(\sum_{\mathbf{a}'} \exp(Q_{\theta}(\mathbf{s}, \mathbf{a}')) \right) \right] - \mathbb{E}_{\mathbf{s}, \mathbf{a} \sim \mathcal{D}} \left[Q_{\theta}(\mathbf{s}, \mathbf{a}) \right] \right) + \mathsf{TDError}(\theta; \mathcal{D})$$

Encourages the Q-function to not over-estimate

K., Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. NeurIPS 2020.

Ingredient 2: Large Networks

spatial information in the image!

Ingredient 3: Methods to Effectively Use Capacity

K., Agarwal, Ma, Courville, Tucker, Levine. **DR3: Value-Based Deep RL Requires Explicit Regularization**. ICLR 2022 Dabney et al. **The Value Improvement Path: Towards Better Representations for Reinforcement Learning.** AAAI 2021.

Summary: "Scaled Q-Learning"

Performance of Scaled Q-Learning

We find: ~80M ResNet + sub-optimal data => better than online RL or decision transformers

Scaling Trends for Scaled Q-Learning

Scaled Q-learning does scale favorably, while other naïve choices (IMPALA) do not

Generalization: Offline Fine-Tuning to New Games

Limited offline data for a new game + pre-trained model on the training games

82% improvement

Generalization: Online Fine-Tuning to New Modes

Scaled Q-Learning learns representations useful under changes to the environment

DR3 Enables Effective Use of Capacity

DR3 improves consistently along the way

Enables the use of higher capacity more effectively

Summary and Takeaways

> We present a simple way to **scale** Q-learning to large datasets + large models

- > Models pre-trained via offline Q-learning learn generalizing representations
- Effectively leveraging capacity of large networks seem critical!

> Preliminary Code:

https://tinyurl.com/scaled-ql-code

Thank You!

Research at Google

