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Offline Reinforcement Learning

L Offline RL ]

train for
many epochs

big dataset from
past interactions

deploy learned policy in new scenarios



The Generalization Promise of Offline

Training on large, pre-collected datasets to attain broad generalization

Transformer Encoder

Embedded
Patches
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Broadly
generalizing
policies

Large datasets Expressive function approximators



This Talk

What does it take to make
offline RL scale and generalize?



Where Are We At?

Disclaimer: This definitely misses some works (sorry!) but reflects the general trend.
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arge-scale Study: Single Policy to Play Atari Games
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Train a single policy on 40 Atari games

|

_ ~ First large-scale test-bed to evaluate generalization and scaling 1

Why Atari? Why is this Requires | cs: offl | _ ced |
problem challenging? eduires large networks; offline Q-learning never worke !
I

|

2 billion transitions, 40 games, sub-optimal data

Lee et al. Multi-Game Decision Transformers. NeurlPS 2022.



Three key ingredients
IN our recipe.....



Ingredient 1: An offline RL Algorithm

Conservative Q-Learning (CQL)
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K., Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. NeurlPS 2020.



Ingredient 2:
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Not the typical
IMPALA architecture!
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Keep track of
spatial information in the image!
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Ingredient 3: Methods to
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Learned spatial
embeddings

—ffectively Use Capacity
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DR3 normalization: Normalize
500 features to have norm = 1
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Iteration 20 0 50 100 150 200

K., Agarwal, Ma, Courville, Tucker, Levine. DR3: Value-Based Deep RL Requires Explicit Regularization. ICLR 2022
Dabney et al. The Value Improvement Path: Towards Better Representations for Reinforcement Learning. AAAI 2021.



summary: “Scaled Q-Learning”
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Performance of Scaled Q-Learning

We find: ~80M ResNet + sub-optimal data => better than online RL or decision transformers

Imitation methods Online RL CQL + DR3 + ResNet101

DT (200M) DT (40M) BC (80M) Online MT DQN (5X)* Scaled QL (Ours, 80M)  ----- Behavior Policy

Sub-optimal Data Performance Profile (Sub-optimal Data)
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Scaling Trends for Scaled Q-Learning

Scaled Q-learning does scale favorably, while other naive choices (IMPALA) do not

B Scaled QL + ResNet/MSE Scaled QL + ResNet/C51 B CQL + IMPALA
Scaling curves with near-optimal data
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Generalization: Offline Fine-Tuning to New Games

Limited offline data for a new game +

pre-trained model on the training games
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Generalization: Online Fine-Tuning to New Modes

Scaled Q-Learning learns representations useful under changes to the environment

Scaled QL (Ours) Scaled QL (Scratch) MAE (Pretrain) Single-game DQN (50M)
Freeway (m1d0) Hero (m1dO) Breakout (m12d0)
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DR3 Enables Effective Use of Capacity
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DR3 improves consistently along the way

DR3 normalization
Enables the use of higher capacity more effectively
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Summary and Takeaways

» We present a simple way to scale Q-learning to large datasets + large models
» Models pre-trained via offline Q-learning learn generalizing representations

» Effectively leveraging capacity of large networks seem critical!

> Preliminary Code:
https://tinyurl.com/scaled-ql-code Th aﬂ k YO u '

?
Theoretical . Empirical

DR3, C51 This work



https://tinyurl.com/scaled-ql-code

