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Our Vision: Incorporate Large Robotic Datasets

Limited task-specific data Good Policy Generalization



How To Learn From Large Robot Datasets
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Pre-training on broad data Adaptation on
(e.g., representation limited, task-
learning) specific data

Imitation learning

Ebert et al. 2021
Young et al. 2021
and many moreg

Pre-trained representation,

Imitation pal. 2022

»y more....

Why?
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Pre-Training for Robots Using Offline RL
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@ Batch-mixing pre-training and target data
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Main Innovation: Architectu\fe
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Task: Solving A Task in A New Domain

2. Fine-Tune on Target Domain Data:
1 door, 10 demonstrations

|
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1. Pre-Train on Bridge Data, 12 doors 800 demonstrations



Results: Solving A Task in A New Domain

Method: Method:
Imitation (Best prior method) PTR (Ours)




Task: Solving New Tasks in New Domains
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Best Prior

Results: Solving New Tasks in New Domains

Task: Put sweet . !
potato on plate

Task: Put sweet
potato on plate




Some Quantitative Results

—

( BC finetuning ) Joint training | Target data only [ Pre-train. rep. + BC finetune ‘
Task || PTR (Ours) || BC (fine.) | Autoreg. BC BeT | COG BC | CQL BC | R3M MAE
Take croissant from metal bowl 7/10 3/10 5/10 1/10 || 410  4/10 | 0/10 1/10 1/10 3/10
Put sweet potato on plate 7/20 1/20 1720 0/20 || 020  0/20 | 0/20 0/20 0/20 1/20
Place knife in pot 4/10 2/10 2/10 0/10 || 1/10  3/10 | 3/10 0/10 0/10 0/10
Put cucumber in pot 5/10 0/10 1/10 0/10 j 2/10  1/10 | 0/10 0/10 | 0/10 0/10

)\ - o N /‘
Imitation (using transformers, Self-supervised pre-training
auto-regressive) from internet data / bridge data
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Better fine-tuning! Representation learning

Takeaway: Offline RL learn useful representations + better fine-tuning



Scaling And Analysis

Scaling Trend for PTR
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Networks

The larger the network,
the better!

Why would RL enable better performance...

..when the data is collected via
human teleoperation?

Spoiler: Value-functions can learn which
decisions are more critical than others!

Qualitative Comparison of BC (finetune) and PTR

Task: Take Croissant from Metal Bowl

BC (finetune)

‘ \V «—— Failure: grasps bowl instead of croissant when
crossiant is not underneath
V. 7’ "]

PTR
Success: grasps croissant and puts by sink

BC (finetune)

«~—— Failure: executes an imprecise grasp, and fails to
locate the pot accurately

PTR
Success: Places Cucumber in Pot




Takeaways and Future Work

» Offline RL can be good for both representation learning and control,

» Future Directions:
» Goal specification: language? goals? reward learning?
videos?

Thank You!




